Abstrakt: |
Nowadays, due to the climate and energy targets and the decreasing cost of the technology, the immersion of renewable energy sources, such as photovoltaic (PV) solar generation systems, is increasing around the world, bringing benefits for the environment, society and economy. Nonetheless, in residential buildings, PV generation and electricity consumption do not have the same variation profile and such mismatch brings the need to export to the grid a substantial quantity of the locally generated energy, even though an identical quantity of energy is later imported back for local consumption, leading to stress on the electricity distribution grid. Demand-Side Management (DSM) in residential buildings with PV generation along with battery storage can increase the potential of self-consumption and therefore the ability to increase the self-sufficiency of the building. The aim of this paper is to analyze DSM and energy storage options in order to evaluate the generated impact at the PV integration. The results show that by applying a rescheduling technique it is possible to decrease between 19.7% and 85.9% the energy that it is sent into the grid and, at the same time, it generates a reduction from 6.1% to 12.7% of the energy that it is consumed from the grid in order to ensure a more efficient matching between the generation power and demand power. By coupling a PV system to an energy storage system, the energy that it is injected into the grid, decreases between 45.1% and 100% and also does the percentage of consumed energy from the grid with a reduction between 7.1% and 50.4%. [ABSTRACT FROM AUTHOR] |