Autor: |
Yingying Yan, Cabrera-Perez, David, Jintai Lin, Pozzer, Andrea, Lu Hu, Millet, Dylan B., Porter, William C., Lelieveld, Jos |
Předmět: |
|
Zdroj: |
Geoscientific Model Development Discussions; 2018, p1-32, 32p |
Abstrakt: |
The GEOS-Chem model has been updated with the SAPRC-11 aromatics chemical mechanism, with the purpose of evaluating global and regional effects of the most abundant aromatics (benzene, toluene, xylenes) on the chemical species important for tropospheric oxidation capacity. The model evaluation based on surface and aircraft observations indicates good agreement for aromatics and ozone. A comparison between scenarios in GEOS-Chem with simplified aromatic chemistry (as in the standard setup, with no ozone formation from related peroxy radicals or recycling of NOx) and with the SAPRC-11 scheme reveals relatively slight changes in ozone, hydroxyl radical, and nitrogen oxides on a global mean basis (1-4%), although remarkable regional differences (5-20%) exist near the source regions. NOx decreases over the source regions and increases in the remote troposphere, due mainly to more efficient transport of peroxyacetyl nitrate (PAN), which is increased with the SAPRC aromatic chemistry. Model ozone mixing ratios with the updated aromatic chemistry increase by up to 5ppb (more than 10%), especially in industrially polluted regions. The ozone change is partly due to the direct influence of aromatic oxidation products on ozone production rates, and in part to the altered spatial distribution of NOx that enhances the tropospheric ozone production efficiency. Improved representation of aromatics is important to simulate the tropospheric oxidation. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|