Abstrakt: |
The nucleus of the solitary tract is a potential site for taste–visceral interactions. Connections from the caudal, visceral area of the nucleus (cNST) to the rostral, gustatory zone (rNST) have been described, but the phenotype of cells giving rise to the projection(s) and their distribution among rNST subdivisions are unknown. To determine these characteristics of the intrasolitary pathway, we injected pan‐neuronal and floxed AAV viruses into the cNST of mice expressing cre in glutamatergic, GABAergic, or catecholaminergic neurons. Particular attention was paid to the terminal field distribution in rNST subdivisions by simultaneously visualizing P2X2 localized to gustatory afferent terminals. All three phenotypically identified pathways terminated in rNST, with the density greatest for glutamatergic and sparsest for catecholaminergic projections, observations supported by retrograde tracing. Interestingly, cNST neurons had more prominent projections to rNST regions medial and ventral to P2X2 staining, i.e., the medial and ventral subdivisions. In addition, GABAergic neurons projected robustly to the lateral subdivision and adjacent parts of the reticular formation and spinal trigeminal nucleus. Although cNST neurons also projected to the P2X2‐rich central subdivision, such projections were sparser. These findings suggest that cNST visceral signals exert stronger excitatory and inhibitory influences on local autonomic and reflex pathways associated with the medial and ventral subdivisions compared to weaker modulation of ascending pathways arising from the central subdivision and ultimately destined for the forebrain. We injected AAV‐GFP viruses into caudal, visceral NST and identified a topographically distinct projection to rostral, orosensory NST including glutamatergic, GABAergic, and catecholaminergic components. Terminations were notably denser in the medial and ventral than the rostral central subdivision, suggesting this pathway is more important in modulating taste‐elicited autonomic and oromotor reflexes than signals in the ascending taste pathway. [ABSTRACT FROM AUTHOR] |