Lithium and gallium vacancies in LiGaO2 crystals.

Autor: Lenyk, C. A., Holston, M. S., Kananen, B. E., Giles, N. C., Halliburton, L. E.
Předmět:
Zdroj: Journal of Applied Physics; 2018, Vol. 124 Issue 13, pN.PAG-N.PAG, 6p, 3 Diagrams, 3 Charts, 2 Graphs
Abstrakt: Lithium gallate (LiGaO2) is a wide-band-gap semiconductor with an optical gap greater than 5.3 eV. When alloyed with ZnO, this material offers broad functionality for optical devices that generate, detect, and process light across much of the ultraviolet spectral region. In the present paper, electron paramagnetic resonance (EPR) is used to identify and characterize neutral lithium vacancies ( V Li 0) and doubly ionized gallium vacancies ( V Ga 2 − ) in LiGaO2 crystals. These S = 1/2 native defects are examples of acceptor-bound small polarons, where the unpaired spin (i.e., the hole) is localized on one oxygen ion adjacent to the vacancy. Singly ionized lithium vacancies ( V Li −) are present in as-grown crystals and are converted to their paramagnetic state by above-band-gap photons (x rays are used in this study). Because there are very few gallium vacancies in as-grown crystals, a post-growth irradiation with high-energy electrons is used to produce the doubly ionized gallium vacancies ( V Ga 2 − ). The EPR spectra allow us to establish detailed models for the two paramagnetic vacancies. Anisotropy in their g matrices is used to identify which of the oxygen ions adjacent to the vacancy has trapped the hole. Both spectra also have resolved structure due to hyperfine interactions with 69Ga and 71Ga nuclei. The V Li 0 acceptor has nearly equal interactions with Ga nuclei at two Ga sites adjacent to the trapped hole, whereas the V Ga 2 − acceptor has an interaction with Ga nuclei at only one adjacent Ga site. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index