Autor: |
Amrouche, Cherif, Girault, Vivette, Schonbek, Maria Elena, Schonbek, Tomas P. |
Předmět: |
|
Zdroj: |
SIAM Journal on Mathematical Analysis; 2000, Vol. 31 Issue 4, p740-753, 14p |
Abstrakt: |
In this paper we study the space-time asymptotic behavior of the solutions, and their derivatives, to the incompressible Navier--Stokes equations in dimension 2 ≤ n ≤ 5. Using moment estimates we obtain that strong solutions to the Navier--Stokes equations which decay in L ² at the rate of ¦¦ u ¦¦ (t)2 ≤ C (t +1)-μ will have the following pointwise space-time decay, for 0 ≤ k ≤ n/2: ... where ρΟ = (1--2k/n)(m/2+μ+n/4), ¦&aalpha;¦ = m and μ > n/4. 4 . [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|