Autor: |
Bai, Xiao-Zhi, Zhang, Ju-Lei, Liu, Yang, Zhang, Wei, Li, Xiao-Qiang, Wang, Ke-Jia, Cao, Meng-Yuan, Zhang, Jia-Ning, Han, Fu, Shi, Ji-Hong, Hu, Da-Hai |
Předmět: |
|
Zdroj: |
Cellular Physiology & Biochemistry (Karger AG); Sep2018, Vol. 49 Issue 2, p489-500, 12p |
Abstrakt: |
Background/Aims: With increased understanding of sepsis, mortality is decreasing. However, there is still a lack of effective therapeutic strategy. The inflammatory response of macrophages is critical during sepsis. Methods: Macrophages were stimulated with LPS. Western blotting and qRT-PCR were used to detect inflammatory responses. Then, the inhibitor of microRNA-138 was transfected and Western blotting, qRT-PCR, H&E staining and ELISA were used to verify the role of microRNA-138 in inflammation. Then target gene prediction databases were used to predict the potential target of microRNA-138. Both animal and cell models under LPS challenges were established to verify the regulation of SIRT1 and microRNA-138 during inflammation. Results: The present study showed that microRNA-138 was increased in macrophages stimulated with LPS. Additionally, the NF-κB and AKT pathways were both activated. The pre-treatment of microRNA-138 inhibitor decreased inflammatory factors, downregulated the NF-κB pathway, activated the AKT pathway and protected against organ damage in mice challenged with LPS. SIRT1 was demonstrated as a potential target of microRNA-138In macrophages stimulated with LPS, the inhibition effect of microRNA-138 inhibitor on inflammation was lost by SIRT1 siRNA pre-treatment. In the animal model, the protective effect of microRNA-138 antagomir disappeared in SIRT1 knockout mice. Conclusion: We demonstrated that miR-138 participated in the inflammatory process by inhibiting SIRT1 and activating the NF-κB pathway. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|