THE DENSITY OF $j$ -WISE RELATIVELY $r$ -PRIME ALGEBRAIC INTEGERS.

Autor: SITTINGER, BRIAN D.
Předmět:
Zdroj: Bulletin of the Australian Mathematical Society; Oct2018, Vol. 98 Issue 2, p221-229, 9p
Abstrakt: Let $K$ be a number field with a ring of integers ${\mathcal{O}}$. We follow Ferraguti and Micheli [‘On the Mertens–Cèsaro theorem for number fields’, Bull. Aust. Math. Soc. 93 (2) (2016), 199–210] to define a density for subsets of ${\mathcal{O}}$ and use it to find the density of the set of $j$ -wise relatively $r$ -prime $m$ -tuples of algebraic integers. This provides a generalisation and analogue for several results on natural densities of integers and ideals of algebraic integers. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index