Autor: |
SITTINGER, BRIAN D. |
Předmět: |
|
Zdroj: |
Bulletin of the Australian Mathematical Society; Oct2018, Vol. 98 Issue 2, p221-229, 9p |
Abstrakt: |
Let $K$ be a number field with a ring of integers ${\mathcal{O}}$. We follow Ferraguti and Micheli [‘On the Mertens–Cèsaro theorem for number fields’, Bull. Aust. Math. Soc. 93 (2) (2016), 199–210] to define a density for subsets of ${\mathcal{O}}$ and use it to find the density of the set of $j$ -wise relatively $r$ -prime $m$ -tuples of algebraic integers. This provides a generalisation and analogue for several results on natural densities of integers and ideals of algebraic integers. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|