Initial excited‐state relaxation of locked retinal protonated schiff base chromophore. An insight from coupled cluster and multireference perturbation theory calculations.

Autor: Grabarek, Dawid, Andruniów, Tadeusz
Předmět:
Zdroj: Journal of Computational Chemistry; Aug2018, Vol. 39 Issue 22, p1720-1727, 9p
Abstrakt: The initial S1 excited‐state relaxation of retinal protonated Schiff base (RPSB) analog with central C11C12 double bond locked by eight‐membered ring (locked‐11.8) was investigated by means of multireference perturbation theory methods (XMCQDPT2, XMS‐CASPT2, MS‐CASPT2) as well as single‐reference coupled‐cluster CC2 method. The analysis of XMCQDPT2‐based geometries reveals rather weak coupling between in‐plane and out‐of‐plane structural evolution and minor energetical relaxation of three locked‐11.8 conformers. Therefore, a strong coupling between bonds length inversion and backbone out‐of‐plane deformation resulting in a very steep S1 energy profile predicted by CASSCF/CASPT2 calculations is in clear contradiction with the reference XMCQDPT2 results. Even though CC2 method predicts good quality ground‐state structures, the excited‐state structures display more advanced torsional deformation leading to ca. 0.2 eV exaggerated energy relaxation and significantly red shifted (0.4–0.7 eV) emission maxima. According to our findings, the initial photoisomerization process in locked‐11.8, and possibly in other RPSB analogs, studied fully (both geometries and energies) by multireference perturbation theory may be somewhat slower than predicted by CASSCF/CASPT2 or CC2 methods. © 2018 Wiley Periodicals, Inc. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index