ПАРИ ГАНА I НУЛЬОВА ОБЕРНЕНА ЗАДАЧА.

Autor: ВОЛОШИН, Г. А., МАСЛЮЧЕНКО, В. К., МЕЛЬНИК, В. С.
Zdroj: Matematychni Studii; 2017, Vol. 48 Issue 1, p74-81, 8p
Abstrakt: We prove that for a function α0:[0,1]→R there exists a separately continuous function f:[0,1]²→R such that E0(fx)=α0(x) on [0,1] if and only if α0 is the nonnegative lower semicontinuous function, where fx(y)=f(x,y) for any x,y,∈[0,1] and E0(g) is the best approximation of a function g by a constant. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index