Different expression profiles of the lysyl oxidases and matrix metalloproteinases in human ACL fibroblasts after co-culture with synovial cells.

Autor: Wang, Chunli, Xu, Chunming, Chen, Rongfu, Yang, Li, Sung, KL Paul
Předmět:
Zdroj: Connective Tissue Research; Jul2018, Vol. 59 Issue 4, p369-380, 12p
Abstrakt: Purposes The anterior cruciate ligament (ACL) has poor functional healing response. The synovial tissue surrounding ACL ligament might be a major regulator of the microenvironment in the joint cavity after ACL injury, thus affecting the repair process. Using transwell co-culture, this study explored the direct influence of human synovial cells (HSCs) on ACL fibroblasts (ACLfs) by characterizing the differential expression of the lysyl oxidase family (LOXs) and matrix metalloproteinases (MMP-1, −2, −3), which facilitate extracellular matrix (ECM) repair and degradation, respectively. Methods The mRNA expression levels of LOXs and MMP-1, −2, −3 were analyzed by semi-quantitative PCR and quantitative real-time PCR. The protein expression levels of LOXs and MMP-1, −2, −3 were detected by western blot. Results We found that co-culture resulted in an increase in the mRNAs of LOXs in normal ACLfs and differentially regulated the expression of MMPs. Then we applied 12% mechanical stretch on ACLfs to induce injury and found the mRNA expression levels of LOXs in injured ACLfs were decreased in the co-culture group relative to the mono-culture group. Conversely, the mRNA expression levels of MMPs in injured ACLfs were promoted in the co-culture group compared with the mono-culture group. At translational level, we found that LOXs were lower while MMPs were highly expressed in the co-culture group compared to the mono-culture group. Conclusions The co-culture of ACLfs and HSCs, which mimicked the cell-to-cell contact in a micro-environment, could contribute to protein modulators for wound healing, inferring the potential reason for the poor self-healing of injured ACL. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index
Nepřihlášeným uživatelům se plný text nezobrazuje