Abstrakt: |
In the present study, three cDNAs of AdipoRs (MpAdipoR1a, MpAdipoR1b, and MpAdipoR2) were identified from juvenile black carp Mylopharyngodon piceus. There were 375, 378, and 356 amino acids in the MpAdipoR1a, MpAdipoR1b, and MpAdipoR2, respectively. BLAST analysis reveals that MpAdipoRs share high identities with other known AdipoRs from zebrafish, rainbow trout, human, etc. And there were all seven transmembrane regions in the amino acid sequences of MpAdipoR1s and MpAdipoR2, respectively. The relative expression levels of MpAdipoR1s were higher in the liver, blood, brain, and eyes in black carp (p < 0.05). Relatively higher expression of MpAdipoR2 was detected in the liver (p < 0.05) and then in the adipose tissues and blood by real-time PCR assays. The relative expression levels of AdipoR mRNA in the liver, muscle, brain, blood, and adipose tissues were detected by real-time PCR in black carp fed with four levels of dietary carbohydrate (CHO) (10.65, 19.43, 28.84, and 37.91%) for 9 weeks, respectively. The expression levels of MpAdipoR1s in the liver, muscle, brain, and blood were induced and reached to the maximum at optimal dietary CHO (19.43 or 28.84%) and then were decreased at 37.91% dietary CHO, although there were no significant differences on the expression levels of MpAdipoR1a in the liver between 19.43, 28.84, and 37.91% dietary CHO. Similarly, MpAdipoR2 were also induced to the maximal levels in the liver, muscle, brain, and blood at optimal dietary CHO (19.43 or 28.84%) compared with that at 10.65% dietary CHO, although no significant differences were observed on the expression levels of MpAdipoR2 in the liver and muscle between groups fed 19.43 and 37.91% dietary CHO (p > 0.05). However, the expression levels of MpAdipoRs in the adipose tissues were significantly downregulated at excessive dietary CHO (37.91%) compared with other groups (p < 0.05). These results indicated that MpAdipoRs were inducible proteins and might enhance the understanding of their vital roles in the regulation of glucose metabolic homeostasis in black carp. [ABSTRACT FROM AUTHOR] |