Autor: |
Alzahrani, Salma Ahmed, Malik, Maqsood Ahmad, Al-Thabaiti, Shaeel Ahmed, Khan, Zaheer |
Předmět: |
|
Zdroj: |
Applied Nanoscience; Mar2018, Vol. 8 Issue 3, p255-271, 17p |
Abstrakt: |
This work demonstrates a competitive reduction method of synthesis of nanomaterials. In this method along cetyltrimethylammonium bromide (CTAB), the reduction of Ag+ and Fe3+ ions is achieved by ascorbic acid-to-bimetallic Ag@Fe yellow-colored nanomaterials. The shape of UV-visible spectra and wavelengths absorbed of Ag@Fe can be tuned from ca. 290-600 nm by controlling [CTAB] and [Ag+]. The apparent first-order rate constants were calculated within the approximation of 6.1 × 10−3 s−1. The as-prepared Ag@Fe NPs have been found to be very important catalyst in terms of depredate methyl orange in vicinity of sodium borohydride (NaBH4), which exhibits excellent efficiency and re-usability in the prototypical reaction. The cmc of cationic surfactant CTAB has been determined by conductivity method under different experimental conditions. In the presence of CTAB, Ag+ and Fe3+ ions reduce to Ag@Fe core/shell nanoparticles, comprehend a change in wavelength and intensity of SRP band. The apparent first-order rate constant, activation energy, and turnover frequency for the methyl orange reduction catalyzed by Ag@Fe NPs were found to be 1.6 × 10−3 s−1, 58.2 kJ mol−1, and 1.1 × 10−3 s−1, respectively. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|