Negative regulation of cellular Ca2+ mobilization by ryanodine receptor type 3 in mouse mesenteric artery smooth muscle.

Autor: Katsuhito Matsuki, Daiki Kato, Masashi Takemoto, Yoshiaki Suzuki, Hisao Yamamura, Susumu Ohya, Hiroshi Takeshima, Yuji Imaizumi
Předmět:
Zdroj: American Journal of Physiology: Cell Physiology; Jul2018, Vol. 315 Issue 1, pC1-C9, 9p
Abstrakt: Physiological functions of type 3 ryanodine receptors (RyR3) in smooth muscle (SM) tissues are not well understood, in spite of their wide expression. However, the short isoform of RyR3 is known to be a dominant-negative variant (DN-RyR3), which may negatively regulate functions of both RyR2 and full-length (FL) RyR3 by forming hetero-tetramers. Here, functional roles of RyR3 in the regulation of Ca2+ signaling in mesenteric artery SM cells (MASMCs) were examined using RyR3 homozygous knockout mice (RyR3-/-). Quantitative PCR analyses suggested that the predominant RyR3 subtype in MASMs from wild-type mice (RyR3+/+) was DN-RyR3. In single MASMCs freshly isolated from RyR3-/-, the EC50 of caffeine to induce Ca2+ release was lower than that in RyR3+/+ myocytes. The amplitude and frequency of Ca2+ sparks and spontaneous transient outward currents in MASMCs from RyR3-/- were all larger than those from RyR3+/+. Importantly, mRNA and functional expressions of voltage-dependent Ca2+ channel and large-conductance Ca2+- activated K+ (BK) channel in MASMCs from RyR3-/- were identical to those from RyR3+/+. However, in the presence of BK channel inhibitor, paxilline, the pressure rises induced by BayK8644 in MA vascular beds of RyR3-/- were significantly larger than in those of RyR3+/+. This indicates that the negative feedback effects of BK channel activity on intracellular Ca2+ signaling was enhanced in RyR3-/-. Thus, RyR3, and, in fact, mainly DN-RyR3, via a complex with RyR2 suppresses Ca2+ release and indirectly regulated membrane potential by reducing BK channel activity in MASMCs and presumably can affect the regulation of intrinsic vascular tone. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index