Experience Gained from Construction of Low-Emission Combustion Chambers for On-Land Large-Capacity Gas-Turbine Units: GT24/26.

Autor: Bulysova, L. A., Vasil’ev, V. D., Berne, A. L., Gutnik, M. M.
Zdroj: Thermal Engineering; Jun2018, Vol. 65 Issue 6, p362-370, 9p
Abstrakt: This article is the third in a planned series of articles devoted to the experience gained around the world in constructing low-emission combustion chambers for on-land large-capacity (above 250 MW) gas-turbine units (GTUs). The aim of this study is to generalize and analyze the ways in which different designers apply the fuel flow and combustion arrangement principles and the fuel feed control methods. The considered here GT24 and GT26 (GT24/26) gas-turbine units generating electric power at the 60 and 50 Hz frequencies, respectively, are fitted with burners of identical designs. Designed by ABB, these GTUs were previously manufactured by Alstom, and now they are produced by Ansaldo Energia. The efficiency of these GTUs reaches 41% at the 354 MW power output during operation in the simple cycle and 60.5% at the 505MW power output during operation in the combined cycle. Both GTUs comply with all requirements for harmful emissions. The compression ratio is equal to 35. In this article, a system is considered for two-stage fuel combustion in two sequentially arranged low-emission combustion chambers, one of which is placed upstream of the high-pressure turbine (CC1) and the other upstream of the low-pressure turbine (CC2). The article places the main focus on the CC2, which operates with a decreased content of oxygen in the oxidizer supplied to the burner inlets. The original designs of vortex generators and nozzles placed in the flow of hot combustion products going out from the high-pressure turbine are described in detail. The article also presents an original CC2 front plate cooling system, due to which a significantly smaller amount of air fed for cooling has been reached. The article also presents the pressure damping devices incorporated in the chamber, the use of which made it possible to obtain a significantly wider range of CC loads at which its low-emission operation is ensured. The fuel feed adjustment principles and the combustion control methods implemented in the low-emission combustion chambers of this GTU are of interest from the scientific and practical points of view. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index