Multi-element substituted hydroxyapatites: synthesis, structural characteristics and evaluation of their bioactivity, cell viability, and antibacterial activity.

Autor: Rajendran, Abinaya, Balakrishnan, Subha, Kulandaivelu, Ravichandran, Nellaiappan, Sankara Narayanan T. S.
Zdroj: Journal of Sol-Gel Science & Technology; May2018, Vol. 86 Issue 2, p441-458, 18p
Abstrakt: Synthesis of unsubstituted and multi-element (magnesium, zinc and cobalt) substituted hydroxyapatites (HAP) with varying stoichiometric compositions and evaluation of their morphological and structural characteristics, degree of crystallinity, bioactivity, cytotoxicity and antibacterial activity are addressed. The morphological features are not altered much following the substitution of Mg2+, Zn2+, and Co2+ in the HAP lattice. Nevertheless, their substitution exerts a strong influence on the structural characteristics HAP. Rietveld refinement analysis of the X-ray diffraction patterns indicates a decrease in crystallinity and mineralogical composition of HAP phase, which is accompanied with an increase of β-tricalcium phosphate (β-TCP) phase along with Co3O4 phase. Broadening of the PO43− peaks and a decrease in intensity of the OH peak are observed by Fourier-transform infrared spectra. A decrease in intensity, broadening and a slight shift in Raman band (at 961 cm−1 for HAP) towards the lower side suggest the incorporation of Mg, Zn, and Co, disordering of the crystal structure of HAP and formation of β-TCP as additional phase besides HAP. The MgZnCo-HAP’s exhibits a better bioactivity, cell viability and anti-bacterial activity than the unsubstituted HAP. However, a decrease in cell viability and anti-bacterial activity are observed when the stoichiometric ratio of the substituent elements is relatively higher. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index