Improving the efficiency of laser-induced backside wet etching of optically transparent materials as a result of generation of carbon and silver nanoparticles.

Autor: Tsvetkov, M. Yu., Yusupov, V. I., Timashev, P. S., Golant, K. M., Minaev, N. V., Bagratashvili, V. N.
Zdroj: Nanotechnologies in Russia; Jan2017, Vol. 12 Issue 1/2, p86-97, 12p
Abstrakt: The processes of laser-induced backside wet etching (LIBWE) and microstructuring of silicate glass by laser impulses with a wavelength of 527 nm and a duration of about 5 ns have been studied in different aqueous solutions that provide different etching modes, namely, volume (in a solution of dye), volume + surface (in a solution of dye and polyethylene glycol (PEG)), and surface modes (in an aqueous solution of AgNO3). It is shown that the etching rate and the quality of the obtained structures depend on two different processes: the chemical etching of the material surface by water in the supercritical state (fluid produced at fast laser heating) and the shockwave or cavitational destruction of a material. The LIBWE rate and the quality of the formed microstructures are determined by a dominating mechanism of the process. In the case of an aqueous dye solution, the shockwave and cavitational destruction dominates, which makes it impossible to create well-replicated craters and tracks with smooth walls. Upon the addition of PEG to a solution of dye and, especially, upon using an aqueous solution of the silver precursor (AgNO3), the laser-induced processing of carbon or silver nanoparticles gives rise to a strong absorption on the surface of the formed structure, the undesirable cavitational destruction of a material is suppressed, and the process of etching of the glass surface by supercritical water becomes a dominating mechanism of LIBWE. As a result, it is possible to create highly effective and well-reproducible LIBWE technology for the fabrication of precision optical microstructures on the surface of advanced optical materials on the basis of high-performance and reliable lasers with a wavelength of 527 nm. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index