Abstrakt: |
Herein we have developed and implemented a TD-DFT-based surface-hopping dynamics simulation method with a recently proposed numerical algorithm capable of efficiently computing nonadiabatic couplings, a semiclassical spectrum simulation method, and an excited-state character analysis method based on one-electron transition density matrix. With the use of these developed methods, we have studied the spectroscopic properties, excited-state characters, and photoinduced relaxation dynamics of three silicon nanoclusters capped with different chromophores (Cl@SiQD, Car@SiQD, Azo@SiQD). Spectroscopically, the main absorption peak is visibly red-shifted from Cl@SiQD via Car@SiQD to Azo@SiQD. In contrast to Cl@SiQD and Car@SiQD, there are two peaks observed in Azo@SiQD. Mechanistically, the excited-state relaxation to the lowest S1 excited singlet state is ultrafast in Cl@SiQD, which is less than 190 fs and without involving excited-state trapping. In comparison, there are clear excited-state trappings in Car@SiQD and Azo@SiQD. In the former, the S2 state is trapped more than 300 fs; in the latter, the S3 excited-state trapping is more than 615 fs. These results demonstrate that the interfacial interaction has significant influences on the spectroscopic properties and excited-state relaxation dynamics. The knowledge gained in this work could be helpful for the design of silicon nanoclusters with better photoluminescence performance. [ABSTRACT FROM AUTHOR] |