Autor: |
Sekhar, E. Chandra, Sreenivasulu, M., Babu, B. Rajesh, Ramesh, K. V., Purushotham, Y. |
Předmět: |
|
Zdroj: |
Journal of Superconductivity & Novel Magnetism; Apr2018, Vol. 31 Issue 4, p1199-1207, 9p |
Abstrakt: |
In the present work, structural, magnetic, and dielectric properties of conventional- and microwave-sintered Ni0.6Zn0.4-xCuxFe2O4 (x = 0.0 to 0.4 in steps of 0.1) are studied. X-ray diffraction measurements confirm the formation of a single spinel phase. Crystallite size estimated from Scherrer’s method found between 30-41 nm and 36-28.5 nm in conventional- and microwave-sintered samples respectively. The lattice constant decreases with Cu substitution, suggesting the incorporation of Cu into the spinel lattice. SEM images reveal that microwave sintering results in larger grains with intragranular pores. Saturation magnetization was found to decrease with Cu content. Cation distribution estimated from the magnetization data supports the observed changes in magnetic parameters. A significant influence on microstructure and cation redistribution on dielectric properties are observed for microwave-sintered samples. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|