Abstrakt: |
Abstract: The Australian edible oyster industry has been severely impacted by disease and declining yields since the 1970s. Selective breeding of Saccostrea glomerata is one measure addressing these problems by producing fast‐growing, disease‐resistant oysters. Farmers report that selected oysters have different growth characteristics than their wild counterparts using conventional grow‐out methods. This study investigated how different grow‐out methods influence commercially valuable oyster characteristics including shell length, shape, surface growth deformities and meat condition. In June 2015, selectively bred S. glomerata spat were deployed in two estuaries (Hawkesbury River and Georges River) in NSW, Australia, using three grow‐out methods (fixed trays, Stanway cylinders and floating baskets). In November 2015, oysters were transferred among grow‐out methods to test for the effects of changing grow‐out methods on oyster growth patterns. Oysters transferred from baskets to cylinders and from trays to cylinders had, on average, deeper and wider shells, a higher meat condition and fewer shell surface deformities than oysters in other grow‐out method combinations. However, these oysters were smaller than oysters not grown in cylinders. While there were some differences in growth patterns between the estuaries, overall it was the grow‐out methods that most influenced oyster characteristics. This was attributed to differences in the amount and magnitude of movement oysters experienced in the grow‐out methods, as recorded by motion sensors. This study demonstrates how grow‐out methods can be managed to achieve desired growth trajectories and therefore improve marketability among selective bred S. glomerata. [ABSTRACT FROM AUTHOR] |