Autor: |
Killian, Cedric, Chillet, Daniel, Le Beux, Sebastien, Pham, Van-Dung, Sentieys, Olivier, O'Connor, Ian |
Předmět: |
|
Zdroj: |
DAC: Annual ACM/IEEE Design Automation Conference; 2017, Issue 54, p993-998, 6p |
Abstrakt: |
Nanophotonic is an emerging technology considered as one of the key solutions for future generation on-chip interconnects. Indeed, this technology provides high bandwidth for data transfers and can be a very interesting alternative to bypass the bottleneck induced by classical NoC. However, their implementation in fully integrated 3D circuits remains uncertain due to the high power consumption of on-chip lasers. However, if a specific bit error rate is targeted, digital processing can be added in the electrical domain to reduce the laser power and keep the same communication reliability. This paper addresses this problem and proposes to transmit encoded data on the optical interconnect, which allows for a reduction of the laser power consumption, thus increasing nanophotonics interconnects energy efficiency. The results presented in this paper show that using simple Hamming coder and decoder permits to reduce the laser power by nearly 50% without loss in communication data rate and with a negligible hardware overhead. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|