Abstrakt: |
To ensure contactless sealing of the connection between the rotating rotor and the stationary body in aircraft engines [16], high pressure pumps [13, 14], etc., labyrinth seals (LS) are used. In labyrinth seals, the working medium is sealed by throttling it when moving through successive constrictions and expansions. The study of throttling is usually performed when investigating the gas flow in the direction parallel to the rotor axis. However, it was shown in [1] that the wave processes occurring in the circumferential direction of the labyrinth seals during the vibrations of the rotor contribute to the formation of gas dynamic oscillatory processes. It should be noted that sequencing of the constrictions and extensions affects the oscillation amplitude in the gas-dynamic cavity between the LS and the rotor and increases the flow unevenness. Consequently, if these elements are not taken into account in aeroelastic calculation [15, 21] it can give an additional margin of reducing oscillations in LS and, which is important, to solve related problems [18] of continuous media mechanics [19], reduce labor intensity and counting time. Thus, in accordance with the foregoing, the LS calculation is replaced with calculating the gap seal, equivalent (with margin) to the labyrinth seal, if we consider the processes occurring in the LS circumferential direction. [ABSTRACT FROM AUTHOR] |