DDB1-Mediated CRY1 Degradation Promotes FOXO1-Driven Gluconeogenesis in Liver.
Autor: | Xin Tong, Deqiang Zhang, Nicholas Charney, Ethan Jin, VanDommelon, Kyle, Stamper, Kenneth, Gupta, Neil, Saldate, Johnny, Yin, Lei, Tong, Xin, Zhang, Deqiang, Charney, Nicholas, Jin, Ethan, VanDommelen, Kyle |
---|---|
Předmět: |
GLUCONEOGENESIS
PROTEOLYSIS UBIQUITINATION HYPERGLYCEMIA HIGH-fat diet PROTEIN metabolism GLUCOSE metabolism ANIMAL experimentation BIOCHEMISTRY CELL lines DIET LIVER PHENOMENOLOGY METABOLISM MICE POLYMERASE chain reaction PROTEINS RESEARCH funding WESTERN immunoblotting DNA-binding proteins REVERSE transcriptase polymerase chain reaction PRECIPITIN tests PHYSIOLOGY |
Zdroj: | Diabetes; Oct2017, Vol. 66 Issue 10, p2571-2582, 12p, 2 Black and White Photographs, 5 Graphs |
Abstrakt: | Targeted protein degradation through ubiquitination is an important step in the regulation of glucose metabolism. Here, we present evidence that the DDB1-CUL4A ubiquitin E3 ligase functions as a novel metabolic regulator that promotes FOXO1-driven hepatic gluconeogenesis. In vivo, hepatocyte-specific Ddb1 deletion leads to impaired hepatic gluconeogenesis in the mouse liver but protects mice from high-fat diet-induced hyperglycemia. Lack of Ddb1 downregulates FOXO1 protein expression and impairs FOXO1-driven gluconeogenic response. Mechanistically, we discovered that DDB1 enhances FOXO1 protein stability via degrading the circadian protein cryptochrome 1 (CRY1), a known target of DDB1 E3 ligase. In the Cry1 depletion condition, insulin fails to reduce the nuclear FOXO1 abundance and suppress gluconeogenic gene expression. Chronic depletion of Cry1 in the mouse liver not only increases FOXO1 protein but also enhances hepatic gluconeogenesis. Thus, we have identified the DDB1-mediated CRY1 degradation as an important target of insulin action on glucose homeostasis. [ABSTRACT FROM AUTHOR] |
Databáze: | Complementary Index |
Externí odkaz: |