Abstrakt: |
Recently missions like Hayabusa and Dawn have shown the relevance and benefits of low-thrust spacecraft concerning the exploration of our solar system. In general, the efficiency of low-thrust propulsion is one means of improving mission payload mass. At the same time, gravity-assist maneuvers can serve as mission enablers, as they have the capability to provide 'free energy.' A combination of both, gravity-assist and low-thrust propulsion, has the potential to generally improve mission performance, i.e. planning and optimization of gravity-assist sequences for low-thrust missions is a desirable asset. Currently no established methods exist to include the gravity-assist partners as optimization variable for low-thrust missions. The present paper explains how gravity-assists are planned and optimized, including the gravity-assist partners, for high-thrust missions and discusses the possibility to transfer the established method, based on the Tisserand Criterion, to low-thrust missions. It is shown how the Tisserand Criterion needs to be adapted using a correction term for the low-thrust situation. It is explained why this necessary correction term excludes an a priori evaluation of sequences and therefore their planning and an alternate approach is proposed. Preliminary results of this method, by application of a Differential Evolution optimization algorithm, are presented and discussed, showing that the method is valid but can be improved. Two constraints on the search space are briefly presented for that aim. [ABSTRACT FROM AUTHOR] |