Development of a Flexible Artificial Lateral Line Canal System for Hydrodynamic Pressure Detection.

Autor: Yonggang Jiang, Zhiqiang Ma, Jianchao Fu, Deyuan Zhang
Předmět:
Zdroj: Sensors (14248220); Jun2017, Vol. 17 Issue 6, p1220, 10p
Abstrakt: Surface mounted 'smart skin' can enhance the situational and environmental awareness of marine vehicles, which requires flexible, reliable, and light-weight hydrodynamic pressure sensors. Inspired by the lateral line canal system in fish, we developed an artificial lateral line (ALL) canal system by integrating cantilevered flow-sensing elements in a polydimethylsiloxane (PDMS) canal. Polypropylene and polyvinylidene fluoride (PVDF) layers were laminated together to form the cantilevered flow-sensing elements. Both the ALL canal system and its superficial counterpart were characterized using a dipole vibration source. Experimental results showed that the peak frequencies of both the canal and superficial sensors were approximately 110 Hz, which was estimated to be the resonance frequency of the cantilevered flow-sensing element. The proposed ALL canal system demonstrated high-pass filtering capabilities to attenuate low-frequency stimulus and a pressure gradient detection limit of approximately 11 Pa/m at a frequency of 115 ± 1 Hz. Because of its structural flexibility and noise immunity, the proposed ALL canal system shows significant potential for underwater robotics applications. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index