No long-term effect of land-use activities on soil carbon dynamics in tropical montane grasslands.

Autor: Oliver, Viktoria, Oliveras, Imma, Kala, Jose, Lever, Rebecca, Teh, Yit Arn
Předmět:
Zdroj: Biogeosciences Discussions; 2017, p1-25, 25p
Abstrakt: Montane tropical soils are a large carbon (C) reservoir, acting as both a source and a sink of CO2. Enhanced CO2 emissions originate, in large part, from the decomposition and losses of soil organic matter (SOM) following anthropogenic disturbances. Therefore, quantitative knowledge of the stabilization and decomposition of SOM is necessary in order to understand, assess and predict the impact of land management in the tropics. In particular, labile SOM is an early and sensitive indicator of how SOM responds to changes in land use and management practices, which could have major implications for long term carbon storage and rising atmospheric CO2 concentrations. The aim of this study was to investigate the impacts of grazing and fire history on soil C dynamics in the Peruvian montane grasslands; an understudied ecosystem, which covers approximately a quarter of the land area in Peru. A combination of density and particle-size fractionation was used to quantify the labile and stable organic matter pools, along with soil CO2 flux and decomposition measurements. Grazing and burning together significantly increased soil CO2 fluxes and decomposition rates and reduced temperature as a driver. Although there was no significant effect of land use on total soil C stocks, the combination of burning and grazing decreased the proportion of C in the free LF, especially at the lower depths (10-20 and 20-30 cm). The free LF in the control soils made 20 % of the bulk soil mass and 30 % of the soil C content compared to the burnt-grazed soils, which had the smallest recovery of free LF (10 %) and significantly lower C content (14 %). The burnt soils had a much higher proportion of C in the occluded LF (12 %) compared to the non-burnt soils (7 %) and there was no significant difference among the treatments in the heavy F (~ 70 %). The synergistic effect of burning and grazing caused changes to the soil C dynamics. CO2 fluxes were increased and the dominant temperature driver was obscured by some other process, such as changes in plant C and N allocation promoting autotrophic respiration. In addition, the free LF was negatively affected when these two anthropogenic activities took place on the same site. Most likely a result of reduced detritus being incorporated into the soil. A positive finding from this study is that the total soil C stocks were not significantly affected and the long term C storage in the occluded LF and heavy F were not negatively impacted. Possibly this is because of low intensity fire, fire-resilient grasses and the grazing pressure is below the threshold to cause severe degradation. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index