Tc-99m Ethylenedicysteine and Tc-99m Dimercaptosuccinic Acid Scintigraphy-Comparison of the Two for Detection of Scarring and Differential Cortical Function.

Autor: Anitha, Dharmalingam, U., Pawar Shwetal, V., Parelkar Sandesh, S., Shetye Suruchi, K., Ghorpade Mangala, H., Tilve Gundu
Předmět:
Zdroj: Indian Journal of Nuclear Medicine; Apr-Jun2017, Vol. 32 Issue 2, p93-97, 5p
Abstrakt: Context: The differential cortical function obtained by Tc-99m EC is comparable to that of Tc-99m DMSA. However, identification of scars on Tc-99m EC images needs to be studied. Aims: The aim of the study is to evaluate role of Tc-99m EC for detection of scarring and differential cortical function by comparing with Tc-99m DMSA. Settings and Design: Prospective observational study of recurrent UTI; minimum 6 weeks after acute episode; when urine examination is negative for pus cells. Materials and Methods: Forty-seven children with normal positioned kidneys underwent Tc- 99m EC and DMSA scintigraphy. The DRF and cortical phase images of both studies in the same image matrix size were evaluated by two independent observers for scarring; Tc-99m DMSA was considered as the gold standard. Statistical analysis used: MS Excel 2007 and GraphPad Instat V3.1 and ROC analysis. Results: There was no significant difference in the detection of scarring using two studies with Cohen's kappa coefficient (κ) 0.932. The sensitivity and specificity of Tc-99m EC for detection of scarring was 98.75% and 99.15%, respectively. There was good agreement between the differential cortical function calculated using two studies. Conclusions: The summed Tc-99m EC images with an acceptable high image contrast allow detection of cortical scarring in patients with normal kidney positions. It is an excellent single-modality comprehensive investigational agent for renal parenchymal defects, function, and excretion evaluation with the added advantages of lower cost, convenience, and low radiation exposure to the child. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index