Abstrakt: |
Background and Objectives: According to the estimates of W.H.O., approximately 150000 persons are annually affected by early death of cardiovascular, respiratory disease, and lung cancer resulted from air pollution in south Asia. The short-term and long-term effects are reported as hospital admission, consulting with a physician, number of special disease, death and years of life lost (YOLL). The purpose of this paper is to discuss the effects of PM10 pollution on human health. AirQ 2.2.3 (Air Quality Health Impact Assessment) Model was used to evaluate adverse health effects caused by PM10 exposure in Ahvaz during 2009. Long-term exposure with suspended particulates are expressed as decreasing personal life. The prevalence of bronchitis and reduced lung function in children and adults, even at annual average concentrations of particulate matter below 20 μg/m3 (PM2.5) and 30 μg/m3 (PM10) have been observed. Major sources of emissions resulting from human intervention in particulate matter are road traffic (25-10%), stationary combustion (55-40%), and industrial processes (30-15%). Materials and Methods: First, PM10 data was collected from Ahvaz Environment Protection Organization and Meteorological Organization. Then, raw data were processed by Excel software.. Finally, data processed were inputted to AirQ model. This model proved to be a valid and reliable tool to estimate the potential short-term effects of air pollution. This software is provided by the World Health Organization and is used to quantify the health effects of air pollution. This model consists of four input screens (Supplier, AQ data, Location, Parameter) and two output screens (Table, Graph). Results: The highest and lowest PM10 concentration was reported for Headquarter and Naderi stations respectively. Moreover, the annual, summer, and winter means and 98 decimal of this pollutant in Ahvaz City was measured as 261, 376, 170, and 1268 μg/m3 respectively. Total death toll contributed to PM10 was estimated as 1165 cases in 2009. Conclusion: Using data processing in Excel, AirQ software calculates relative risks, attributable proportion, and baseline incidence and the final output would be displayed in the form of death toll. It is noteworthy that there is no model that can estimate the effect of all pollutants together and simultaneously. In addition, it was found that the annual PM10 emission mean, the summer mean, winter mean, and 98 percentile were 261, 376, 170, and 1268 μg/ m3 in Ahvaz City. Cumulative number of persons for total number of deaths attributed to PM10 exposure was 1165 in 2009; Out of which, 44% has occurred in the days with concentrations lower than 250 μg/m3 . It should be noted that 62% of this value is corresponded to the days with concentrations below 350 μg/m3 . The total cumulative number of cardiovascular death attributed to the exposure with PM10 during one year of monitoring was 612 persons. On the other hand, 52% of these cases have occurred in days with PM10 levels not exceeding 300 μg/m3 . Cumulative number of Hospital Admissions Respiratory Disease attributed to exposure with PM10 during one year of monitoring was 1551 persons; Out of which, 36 % occurred in days with PM10 levels not exceeding 200 μg/m3 . [ABSTRACT FROM AUTHOR] |