Simulation-based sample-sizing and power calculations in logistic regression with partial prior information.

Autor: Grieve, Andrew P., Sarker, Shah‐Jalal
Předmět:
Zdroj: Pharmaceutical Statistics; Nov/Dec2016, Vol. 15 Issue 6, p507-516, 10p
Abstrakt: There have been many approximations developed for sample sizing of a logistic regression model with a single normally-distributed stimulus. Despite this, it has been recognised that there is no consensus as to the best method. In pharmaceutical drug development, simulation provides a powerful tool to characterise the operating characteristics of complex adaptive designs and is an ideal method for determining the sample size for such a problem. In this paper, we address some issues associated with applying simulation to determine the sample size for a given power in the context of logistic regression. These include efficient methods for evaluating the convolution of a logistic function and a normal density and an efficient heuristic approach to searching for the appropriate sample size. We illustrate our approach with three case studies. Copyright © 2016 John Wiley & Sons, Ltd. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index