Abstrakt: |
The design of efficient systems for the targeted delivery of nucleic acids into cells is a rapidly developing area of polymer chemistry, molecular biology, and medicine. Complexes between DNA or RNA polyanions and various polycations, which are usually called polyplexes, hold promise as such delivery systems. Polyethylenimines (PEIs) and their derivatives are often used in research for the preparation of such complexes with plasmid DNA, oligonucleotides, and small RNA. Polyplex nanoparticles are employed for the delivery of genetic material into cells in culture and for the development of methods for the treatment of genetic and cancer diseases. The properties of polyplexes depend on the size, dispersity, and hydrophilicity of the used PEI or its derivatives and the ratio of polymers in the complex, which are responsible for the size, surface charge, and hydrophilicity of the resulting nanoparticles. The efficiency of polyplexes is determined by their ability to interact with components of biological systems on the surface and inside the cells, as well as with the blood vascular walls and the extracellular matrix during systemic in vivo use. [ABSTRACT FROM AUTHOR] |