Calibration chain design based on integrating sphere transfer radiometer for SI-traceable on-orbit spectral radiometric calibration and its uncertainty analysis.

Autor: Wei-Ning Zhao, Wei Fang, Li-Wei Sun, Li-Hong Cui, Yu-Peng Wang
Předmět:
Zdroj: Chinese Physics B; Sep2016, Vol. 25 Issue 9, p1-1, 1p
Abstrakt: In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors, a transfer chain consisting of a fiber coupling monochromator (FBM) and an integrating sphere transfer radiometer (ISTR) was designed in this paper. Depending on the Sun, this chain based on detectors provides precise spectral radiometric calibration and measurement to spectrometers in the reflective solar band (RSB) covering 300–2500 nm with a spectral bandwidth of 0.5–6 nm. It shortens the traditional chain based on lamp source and reduces the calibration uncertainty from 5% to 0.5% by using the cryogenic radiometer in space as a radiometric benchmark and trap detectors as secondary standard. This paper also gives a detailed uncertainty budget with reasonable distribution of each impact factor, including the weak spectral signal measurement with uncertainty of 0.28%. According to the peculiar design and comprehensive uncertainty analysis, it illustrates that the spectral radiance measurement uncertainty of the ISTR system can reach to 0.48%. The result satisfies the requirements of SI-traceable on-orbit calibration and has wider significance for expanding the application of the remote sensing data with high-quality. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index