Autor: |
Andrey Kozyrev, Vasily Kozhevnikov, Mikhail Lomaev, Dmitry Sorokin, Natalia Semeniuk, Victor Tarasenko |
Zdroj: |
Europhysics Letters; May2016, Vol. 114 Issue 4, p1-1, 1p |
Abstrakt: |
This paper presents detailed results of gas discharge theoretical simulation and the explanation of probabilistic mechanism of fast-electrons generation. Within the framework of a hybrid mathematical model, the hydrodynamic and the kinetic approaches are used simultaneously in order to describe the dynamics of different components of a low-temperature discharge plasma. The breakdown of a coaxial diode occurs in the form of a dense plasma region expanding from the cathode. On this background there is a formation of runaway electrons that are initiated by the ensemble of plasma electrons generated in the region of locally enhanced electric field within the front of the dense plasma. It is shown that the power spectrum of fast electrons in the discharge contains the group of electrons with the so-called “anomalous” energies. Comparison of the calculation results with the existent experimental data gives a good agreement for all major process parameters. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|