Optimization on Electrochemical Synthesis of HKUST-1 as Candidate Catalytic Material for Green Diesel Production.

Autor: Lestari, W. W., Nugraha, R. E., Winarni, I. D., Adreane, M., Rahmawati, F.
Předmět:
Zdroj: AIP Conference Proceedings; 2016, Vol. 1725 Issue 1, p020038-1-020038-9, 9p
Abstrakt: In the effort to support the discovery of new renewable energy sources in Indonesia, biofuel is one of promising options. The conversion of vegetable oil into ready-biofuel, especially green diesel, needs several steps, one of which is a hydrogenation or hydro-deoxygenation reaction. In this case, the catalyst plays a very important role regarding to its activity and selectivity, and Metal-Organic Frameworks (MOFs) becoming a new generation of heterogeneous catalyst in this area. In this research, a preliminary study to optimize electrochemical synthesis of the catalytic material based on MOFs, namely HKUST-1 [Cu3(BTC)2], has been conducted. Some electrochemical reaction parameters were tested, for example by modifying the electrochemical synthetic conditions, i.e. by performing variation of voltages (12, 13, 14, and 15 Volt), temperatures (RT, 40, 60, and 80 °C) and solvents (ethanol, water, methanol and dimethyl-formamide (DMF)). Material characterization was carried out by XRD, SEM, FTIR, DTA/TG and SAA. The results showed that the optimum synthetic conditions of HKUST-1 are performed at room temperature in a solvent combination of water: ethanol (1: 1) and a voltage of 15 Volt for 2 hours. The XRD-analysis revealed that the resulted peaks are identical to the simulated powder pattern generated from single crystal data and comparable to the peaks of solvothermal method. However, the porosity of the resulting material through electrochemical method is still in the range of micro-pore according to IUPAC and 50% smaller than the porosity resulted from solvothermal synthesis. The corresponding compounds are thermally stable until 300 °C according to TG/DTA. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index