PDGFR-β Plays a Key Role in the Ectopic Migration of Neuroblasts in Cerebral Stroke.

Autor: Sato, Hikari, Ishii, Yoko, Yamamoto, Seiji, Azuma, Erika, Takahashi, Yoriko, Hamashima, Takeru, Umezawa, Akihiro, Mori, Hisashi, Kuroda, Satoshi, Endo, Shunro, Sasahara, Masakiyo
Předmět:
Zdroj: Stem Cells; Mar2016, Vol. 34 Issue 3, p685-698, 14p
Abstrakt: The neuroprotective agents and induction of endogenous neurogenesis remain to be the urgent issues to be established for the care of cerebral stroke. Platelet-derived growth factor receptor beta (PDGFR-β) is mainly expressed in neural stem/progenitor cells (NSPCs), neurons and vascular pericytes of the brain; however, the role in pathological neurogenesis remains elusive. To this end, we examined the role of PDGFR-β in the migration and proliferation of NSPCs after stroke. A transient middle cerebral-arterial occlusion (MCAO) was introduced into the mice with conditional Pdgfrb-gene inactivation, including N-PRβ-KO mice where the Pdgfrb-gene was mostly inactivated in the brain except that in vascular pericytes, and E-PRβ-KO mice with tamoxifen-induced systemic Pdgfrb-gene inactivation. The migration of the DCX+ neuroblasts from the subventricular zone toward the ischemic core was highly increased in N-PRβ-KO, but not in E-PRβ-KO as compared to Pdgfrb-gene preserving control mice. We showed that CXCL12, a potent chemoattractant for CXCR4-expressing NSPCs, was upregulated in the ischemic lesion of N-PRβ-KO mice. Furthermore, integrin α3 intrinsically expressed in NSPCs that critically mediates extracellular matrix-dependent migration, was upregulated in N-PRβ-KO after MCAO. NSPCs isolated from N-PRβ-KO rapidly migrated on the surface coated with collagen type IV or fibronectin that are abundant in vascular niche and ischemic core. PDGFR-β was suggested to be critically involved in pathological neurogenesis through the regulation of lesion-derived chemoattractant as well as intrinsic signal of NSPCs, and we believe that a coordinated regulation of these molecular events may be able to improve neurogenesis in injured brain for further functional recovery. S tem C ells 2016;34:685-698 [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index