Abstrakt: |
FTIR imaging is a novel spectroscopic technique able to provide cell imaging, in vivo and in real-time. However, one key issue is developing methodologies for cell culture on IR-transparent substrates fitting cell biology requirements. In this work we tested different IR-transparent substrates in terms of biotoxicity, surface properties, and spectral image acquisition qualities. Only a few substrates, namely Si3N4, Ge, GLS, LaF3, Si, SrF2, ZnS/C, ZnS/F, were found to provide cell culture conditions comparable to those observed on usual polycarbonate Petri dishes, the main limiting parameter being the toxicity of the material (ZnS, GLS, PbF2, PbCl2) or a poor adhesiveness (notably diamond, AgCl, CaF2, ZnS). From substrates eligible for a good-quality cell culture, the spectral acquisition quality is mainly affected by the refractive index value. Finally, the best compromise between cell culture quality and image spectral quality could be obtained using Si and Ge substrates. This rationalization of the available IR-transparent substrates for bioimaging is particularly relevant for live cell analyses, where cell culture conditions must remain unaffected by substrate properties. [ABSTRACT FROM AUTHOR] |