Variation of the external quantum efficiency with temperature and current density in red, blue, and deep ultraviolet light-emitting diodes.

Autor: Jun Hyuk Park, Jong Won Lee, Dong Yeong Kim, Jaehee Cho, Schubert, E. Fred, Jungsub Kim, Jinsub Lee, Yong-Il Kim, Youngsoo Park, Jong Kyu Kim
Předmět:
Zdroj: Journal of Applied Physics; 2016, Vol. 119 Issue 2, p023101-1-023101-6, 6p
Abstrakt: The temperature-dependent external quantum efficiencies (EQEs) were investigated for a 620 nm AlGaInP red light-emitting diodes (LEDs), a 450 nm GaInN blue LED, and a 285 nm AlGaN deep-ultraviolet (DUV) LED. We observed distinct differences in the variation of the EQE with temperature and current density for the three types of LEDs. Whereas the EQE of the AlGaInP red LED increases as temperature decreases below room temperature, the EQEs of GaInN blue and AlGaN DUV LEDs decrease for the same change in temperature in a low-current density regime. The free carrier concentration, as determined from the dopant ionization energy, shows a strong material-system-specific dependence, leading to different degrees of asymmetry in carrier concentration for the three types of LEDs. We attribute the EQE variation of the red, blue, and DUV LEDs to the different degrees of asymmetry in carrier concentration, which can be exacerbated at cryogenic temperatures. As for the EQE variation with temperature in a high-current density regime, the efficiency droop for the AlGaInP red and GaInN blue LEDs becomes more apparent as temperature decreases, due to the deterioration of the asymmetry in carrier concentration. However, the EQE of the AlGaN DUV LED initially decreases, then reaches an EQE minimum point, and then increases again due to the field-ionization of acceptors by the Poole-Frenkel effect. The results elucidate that carrier transport phenomena allow for the understanding of the droop phenomenon across different material systems, temperatures, and current densities. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index