Neural Network-Based Model Design for Short-Term Load Forecast in Distribution Systems.

Autor: Ding, Ni, Benoit, Clementine, Foggia, Guillaume, Besanger, Yvon, Wurtz, Frederic
Předmět:
Zdroj: IEEE Transactions on Power Systems; Jan2016, Vol. 31 Issue 1, p72-81, 10p
Abstrakt: Accurate forecasts of electrical substations are mandatory for the efficiency of the Advanced Distribution Automation functions in distribution systems. The paper describes the design of a class of machine-learning models, namely neural networks, for the load forecasts of medium-voltage/low-voltage substations. We focus on the methodology of neural network model design in order to obtain a model that has the best achievable predictive ability given the available data. Variable selection and model selection are applied to electrical load forecasts to ensure an optimal generalization capacity of the neural network model. Real measurements collected in French distribution systems are used to validate our study. The results show that the neural network-based models outperform the time series models and that the design methodology guarantees the best generalization ability of the neural network model for the load forecasting purpose based on the same data. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index