Autor: |
Heimhuber, V., Tulbure, M. G., Broich, M. |
Zdroj: |
Hydrology & Earth System Sciences Discussions; 2015, Vol. 12 Issue 11, p11847-11903, 57p |
Abstrakt: |
The usage of time series of earth observation (EO) data for analyzing and modeling surface water dynamics (SWD) across broad geographic regions provides important information for sustainable management and restoration of terrestrial surface water resources, which suffered alarming declines and deterioration globally. The main objective of this research was to model SWD from a unique validated Landsat-based time series (1986-2011) continuously through cycles of flooding and drying across a large and heterogeneous river basin, the Murray-Darling Basin (MDB) in Australia. We used dynamic linear regression to model remotely sensed SWD as a function of river flow and spatially explicit time series of soil moisture (SM), evapotranspiration (ET) and rainfall (P). To enable a consistent modeling approach across space, we modeled SWD separately for hydrologically distinct floodplain, floodplain-lake and non-floodplain areas within eco-hydrological zones and 10 km × 10 km grid cells. We applied this spatial modeling framework (SMF) to three sub-regions of the MDB, for which we quantified independently validated lag times between river gauges and each individual grid cell and identified the local combinations of variables that drive SWD. Based on these automatically quantified flow lag times and variable combinations, SWD on 233 (64%) out of 363 floodplain grid cells were modeled with r² ≥ 0.6. The contribution of P, ET and SM to the models' predictive performance differed among the three sub-regions, with the highest contributions in the least regulated and most arid sub-region. The SMF presented here is suitable for modeling SWD on finer spatial entities compared to most existing studies and applicable to other large and heterogeneous river basins across the world. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|