The effects of shoe temperature on the kinetics and kinematics of running.

Autor: Sinclair, Jonathan, Naemi, Roozbeh, Chockalingam, Nachiappan, Taylor, Paul John, Shore, Hannah
Předmět:
Zdroj: Footwear Science; Sep2015, Vol. 7 Issue 3, p173-180, 8p
Abstrakt: The aim of the current investigation was to examine the effects of cooled footwear on the kinetics and kinematics of running in comparison to footwear at normal temperature. Twelve participants ran at 4.0 m/s ± 5% in both cooled and normal temperature footwear conditions over a force platform. Two identical footwear were worn, one of which was cooled for 30 min. Lower extremity kinematics were obtained using a motion capture system and tibial accelerations were measured using a triaxial accelerometer. Differences between cooled and normal footwear temperatures were contrasted using paired samplest-tests. The results showed that midsole temperature (cooled = 4.21 °C and normal = 23.25 °C) and maximal midsole deformation during stance (cooled = 12.85 mm and normal = 14.52 mm) were significantly reduced in the cooled footwear. In addition, instantaneous loading rate (cooled = 186.21 B.W/s and normal = 167.08 B W/s), peak tibial acceleration (cooled = 12.75 g and normal = 10.70 g) and tibial acceleration slope (cooled = 478.69 g/s and normal = 327.48 g/s) were significantly greater in the cooled footwear. Finally, peak eversion (cooled = −10.57 ° and normal = −7.83°) and tibial internal rotation (cooled = 10.67 ° and normal = 7.77°) were also shown to be significantly larger in the cooled footwear condition. This study indicates that running in cooled footwear may place runners at increased risk from the biomechanical parameters linked to the aetiology of injuries. [ABSTRACT FROM PUBLISHER]
Databáze: Complementary Index