Impacts of grid resolution on surface energy fluxes simulated with an integrated surface-groundwater flow model.

Autor: Shrestha, P., Sulis, M., Simmer, C., Kollet, S.
Předmět:
Zdroj: Hydrology & Earth System Sciences; 2015, Vol. 19 Issue 10, p4317-4326, 10p, 4 Color Photographs, 4 Charts, 5 Graphs
Abstrakt: The hydrological component of the Terrestrial Systems Modeling Platform (TerrSysMP), which includes integrated surface-groundwater flow, was used to investigate the grid resolution dependence of simulated soil moisture, soil temperature, and surface energy fluxes over a subcatchment of the Rur, Germany. The investigation was motivated by the recent developments of new earth system models, which include 3-D physically based groundwater models for the coupling of land-atmosphere interaction and subsurface hydrodynamics. Our findings suggest that for grid resolutions between 100 and 1000 m, the non-local controls of soil moisture are highly grid resolution dependent. Local vegetation, however, strongly modulates the scaling behavior, especially for surface fluxes and soil temperature, which depends on the radiative transfer property of the canopy. This study also shows that for grid resolutions above a few 100 m, the variation of spatial and temporal patterns of sensible and latent heat fluxes may significantly affect the resulting atmospheric mesoscale circulation and boundary layer evolution in coupled runs. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index