Autor: |
Johnson, Jeremy A., Eliason, Jeffrey K., Maznev, Alexei A., Tengfei Luo, Nelson, Keith A. |
Předmět: |
|
Zdroj: |
Journal of Applied Physics; 2015, Vol. 118 Issue 15, p155104-1-155104-5, 5p, 3 Graphs |
Abstrakt: |
We use a transient thermal grating technique in reflection geometry to measure the effective thermal diffusivity in GaAs as a function of heat transfer distance at three temperatures. Utilizing heterodyne detection, we isolate the "amplitude" grating contribution of the transient grating signal, which encodes the thermal transport dynamics. As the thermal grating period decreases, and thus the heat-transfer distance, we observe a reduction in the effective thermal diffusivity, indicating a departure from diffusive behavior. Non-diffusive behavior is observed at room temperature, as well as low temperature (180 K) and high temperature (425 K). At the shortest thermal grating period measured corresponding to a heat transfer distance of approximately 1 μm, the effective diffusivity drops to a value roughly 50% of the bulk thermal diffusivity. These measurements show the utility of the reflection transient thermal grating technique to measure thermal transport properties of opaque materials. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|