Cinnamaldehyde Contributes to Insulin Sensitivity by Activating PPARδ, PPARγ, and RXR.

Autor: Li, Juan-E, Futawaka, Kumi, Yamamoto, Hiroyuki, Kasahara, Masato, Tagami, Tetsuya, Liu, Tong-Hua, Moriyama, Kenji
Předmět:
Zdroj: American Journal of Chinese Medicine; 2015, Vol. 43 Issue 5, p879-892, 14p, 6 Graphs
Abstrakt: Cinnamon is a traditional folk herb used in Asia and has been reported to have antidiabetic effects. Our previous study showed that cinnamaldehyde (CA), a major effective compound in cinnamon, exhibited hypoglycemic and hypolipidemic effects together in db/db mice. The aim of the present study was to elucidate the molecular mechanisms of the effects of CA on the transcriptional activities of three peroxisome proliferator-activated receptors, (PPAR) α, δ, and γ. We studied the effects of CA through a transient expression assay with TSA201 cells, derivatives of human embryonic kidney cell line (HEK293). Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis was also performed to evaluate mRNA expression levels. We show here that CA induced PPARδ, PPARγ and retinoid X receptor (RXR) activation. CA may activate PPARγ in a different manner than pioglitazone, as CA selectively stimulated PPARγ S342A mutant while pioglitazone did not. In addition, CA and L-165041 had a synergistic effect on PPARδ activation. To gather the biological evidence that CA increases PPARs transcription, we further measured the expressions of PPARδ and PPARγ target genes in 3T3-L1 adipocytes. The data showed CA induced the expression of PPARδ and PPARγ target genes, namely aP2 and CD36, in differentiated adipocytes. As a result, PPARδ, PPARγ and their heterodimeric partner RXR appear to play a part in the CA action in the target tissues, thereby enhancing insulin sensitivity and fatty acid β-oxidation and energy uncoupling in skeletal muscle and adipose tissue. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index