Autor: |
Edelstein, Lawrence, Smythies, John |
Předmět: |
|
Zdroj: |
Philosophical Transactions of the Royal Society B: Biological Sciences; 9/26/2014, Vol. 369 Issue 1652, p1-7, 7p |
Abstrakt: |
This paper presents a review of recent work on the role that two epigeneticrelated systems may play in information processing mechanisms in the brain. The first consists of exosomes that transport epigenetic-related molecules between neurons. The second consists of homeoproteins like Otx2 that carry information from sense organs to primary sensory cortex. There is developing evidence that presynaptic neurons may be able to modulate the fine microanatomical structure in the postsynaptic neuron. This may be conducted by three mechanisms, of which the first is well established and the latter two are novel. (i) By the well-established activation of receptors that trigger a chain of signalling molecules (second messengers) that result in the upregulation and/or activation of a transcription factor. The two novel systems are the exosome system and homeoproteins. (ii) Exosomes are small vesicles that are released upon activation of the axon terminal, traverse the synaptic cleft, probably via astrocytes and are taken up by the postsynaptic neuron. They carry a load of signalling proteins and a variety of forms of RNA. These loads may then be transported widely throughout the postsynaptic neuron and engineer modulations in the fine structure of computational machinery by epigenetic-related processes. (iii) Otx2 is a transcription factor that, inter alia, controls the development and survival of PV+ GABAergic interneurons (PV cells) in the primary visual cortex. It is synthesized in the retina and is transported to the cortex by a presently unknown mechanism that probably includes direct cell-to-cell transfer, and may, or may not, include transfer by the dynein and exosome systems in addition. These three mechanisms explain a quantity of data from the field of de- and reafferentation plasticity. These data show that the modality of the presynaptic neuron controls to a large extent the modality of the postsynaptic neuron. However, themechanism that effects this is currently unknown. The exosome and the homeoprotein hypotheses provide novel explanations to add to the well-established earlier mechanism described above. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|