Timing of nutrient restriction and programming of fetal adipose tissue development.

Autor: Symonds ME, Pearce S, Bispham J, Gardner DS, Stephenson T, Symonds, Michael E, Pearce, Sarah, Bispham, Jayson, Gardner, David S, Stephenson, Terence
Zdroj: Proceedings of the Nutrition Society; Jul2004, Vol. 63 Issue 3, p397-403, 7p
Abstrakt: It is apparent from epidemiological studies that the timing of maternal nutrient restriction has a major influence on outcome in terms of predisposing the resulting offspring to adult obesity. The present review will consider the extent to which maternal age, parity and nutritional restriction at defined stages of gestation can have important effects on fat deposition and endocrine sensitivity of adipose tissue in the offspring. For example, in 1-year-old sheep the offspring of juvenile mothers have substantially reduced fat deposition compared with those born to adult mothers. Offspring of primiparous adult mothers, however, show increased adiposity compared with those born to multiparous mothers. These offspring of multiparous ewes show retained abundance of the brown adipose tissue-specific uncoupling protein 1 at 1 month of age. A stimulated rate of metabolism in brown fat of these offspring may act to reduce adipose tissue deposition in later life. In terms of defined windows of development that can programme adipose tissue growth, maternal nutrient restriction targetted over the period of maximal placental growth results in increased adiposity at term in conjunction with enhanced abundance of mRNA for the insulin-like growth factor-I and -II receptors. In contrast, nutrient restriction in late gestation, coincident with the period of maximal fetal growth, has no major effect on adiposity but results in greater abundance of specific mitochondrial proteins, i.e. voltage-dependent anion channel and/or uncoupling protein 2. These adaptations may increase the predisposal of these offspring to adult obesity. Increasing maternal nutrition in late gestation, however, can result in proportionately less fetal adipose tissue deposition in conjunction with enhanced abundance of uncoupling protein 1. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index