Analysis of the inflammatory process around endosseous dental implants and natural teeth: myeloperoxidase level and nitric oxide metabolism.

Autor: Tözüm TF, Akman AC, Yamalik N, Tulunoglu I, Turkyilmaz I, Karabulut E, Kilinc K, Cehreli MC
Zdroj: International Journal of Oral & Maxillofacial Implants; Nov/Dec2007, Vol. 22 Issue 6, p969-979, 11p
Abstrakt: Purpose: The aim of the present study was to analyze the 2 molecular measures of inflammation: (1) the nitrite, an end metabolite of nitric oxide (NO) oxidation and (2) myeloperoxidase (MPO). Both are found in peri-implant sulcus fluid (PISF) of implants and gingival crevicular fluid (GCF) of natural teeth in healthy or diseased states. Materials and Methods: A total of 109 tooth or dental implant sites, either healthy/noninflamed, inflamed (Gingival Index [GI] > 0), or affected by periodontitis, were classified, and GCF/PISF samples were obtained. GCF/PISF MPO and nitrite levels were spectrophotometrically determined. For comparison of clinical parameters and PISF/GCF nitrite and MPO levels, Kruskal-Wallis analysis followed by Mann-Whitney test with Bonferroni correction was performed. Healthy/noninflamed, slightly inflamed, moderate/severely inflamed sites were also analyzed using the Kruskal-Wallis test followed by the Mann-Whitney test with Bonferroni correction. The correlation between nitrite and MPO levels and clinical inflammatory status were analyzed with Spearman's correlation coefficient. Results: Clinical parameters, including both the GCF and PISF volumes, demonstrated gradual increases with the presence of gingival/peri-implant inflammation (P < .05). Despite the higher PISF than GCF volume at healthy sites (P = .001), there were no volumetric differences at inflamed sites (P = .771). PISF from inflamed sites (P = .025) and GCF from gingivitis and periodontitis sites presented higher total MPO levels (P < .05) than samples from noninflamed sites. Despite the relatively stable GCF nitrite levels at healthy and diseased sites, PISF from inflamed sites had higher nitrite content than noninflamed sites (P < .05). Conclusions: The present study demonstrated the volumetric similarities of PISF and GCF in terms of response to inflammation. However, some differences between the 2 biochemical measures of inflammation and their presence in PISF and GCF were also observed. PISF is likely to have a considerable diagnostic potential for reflecting the biologic changes around load-bearing endosseous dental implants. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index