Organic light emitting diode improves diabetic cutaneous wound healing in rats.

Autor: Wu, Xingjia, Alberico, Stephanie, Saidu, Edward, Rahman Khan, Sazzadur, Zheng, Shijun, Romero, Rebecca, Sik Chae, Hyun, Li, Sheng, Mochizuki, Amane, Anders, Juanita
Předmět:
Zdroj: Wound Repair & Regeneration; Jan/Feb2015, Vol. 23 Issue 1, p104-114, 11p
Abstrakt: ABSTRACT A major complication for diabetic patients is chronic wounds due to impaired wound healing. It is well documented that visible red wavelengths can accelerate wound healing in diabetic animal models and patients. In vitro and in vivo diabetic models were used to investigate the effects of organic light emitting diode (OLED) irradiation on cellular function and cutaneous wound healing. Human dermal fibroblasts were cultured in hyperglycemic medium (glucose concentration 180 mM) and irradiated with an OLED (623 nm wavelength peak, range from 560 to 770 nm, power density 7 or 10 mW/cm2 at 0.2, 1, or 5 J/cm2). The OLED significantly increased total adenosine triphosphate concentration, metabolic activity, and cell proliferation compared with untreated controls in most parameters tested. For the in vivo experiment, OLED and laser (635 ± 5 nm wavelength) treatments (10 mW/cm2, 5 J/cm2 daily for a total of seven consecutive days) for cutaneous wound healing were compared using a genetic, diabetic rat model. Both treatments had significantly higher percentage of wound closure on day 6 postinjury and higher total histological scores on day 13 postinjury compared with control. No statistical difference was found between the two treatments. OLED irradiation significantly increased fibroblast growth factor-2 expression at 36-hour postinjury and enhanced macrophage activation during initial stages of wound healing. In conclusion, the OLED and laser had comparative effects on enhancing diabetic wound healing. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index
Nepřihlášeným uživatelům se plný text nezobrazuje