Synthesis and characterization of three amino-functionalized metal–organic frameworks based on the 2-aminoterephthalic ligand.

Autor: Yang, Ying, Lin, Rijia, Ge, Lei, Hou, Lei, Bernhardt, Paul, Rufford, Thomas E., Wang, Shaobin, Rudolph, Victor, Wang, Yaoyu, Zhu, Zhonghua
Předmět:
Zdroj: Dalton Transactions: An International Journal of Inorganic Chemistry; 5/7/2015, Vol. 44 Issue 17, p8190-8197, 8p
Abstrakt: The incorporation of Lewis base sites and open metal cation sites into metal–organic frameworks (MOFs) is a potential route to improve selective CO2 adsorption from gas mixtures. In this study, three novel amino-functionalized metal–organic frameworks (MOFs): Mg-ABDC [Mg3(ABDC)3(DMF)4], Co-ABDC [Co3(ABDC)3(DMF)4] and Sr-ABDC [Sr(ABDC)(DMF)] (ABDC = 2-aminoterephthalate) were synthesized by solvothermal reactions of 2-aminoterephthalic acid (H2ABDC) with magnesium, cobalt and strontium metal centers, respectively. Single-crystal structure analysis showed that Mg-ABDC and Co-ABDC were isostructural compounds comprising two-dimensional layered structures. The Sr-ABDC contained a three-dimensional motif isostructural to its known Ca analogue. The amino-functionalized MOFs were characterized by powder X-ray diffraction, thermal gravimetric analysis and N2 sorption. The CO2 and N2 equilibrium adsorption capacities were measured at different temperatures (0 and 25 °C). The CO2/N2 selectivities of the MOFs were 396 on Mg-ABDC, 326 on Co-ABDC and 18 on Sr-ABDC. Both Mg-ABDC and Co-ABDC exhibit high heat of CO2 adsorption (>30 kJ mol−1). The Sr-ABDC displays good thermal stability but had a low adsorption capacity resulting from narrow pore apertures. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index