Autor: |
Olmedo, Miguel Iglesias, Tianjian Zuo, Jensen, Jesper Bevensee, Qiwen Zhong, Xiaogeng Xu, Popov, Sergei, Monroy, Idelfonso Tafur |
Zdroj: |
Journal of Lightwave Technology; Feb2014, Vol. 32 Issue 4, p798-804, 7p |
Abstrakt: |
Short range optical data links are experiencing bandwidth limitations making it very challenging to cope with the growing data transmission capacity demands. Parallel optics appears as a valid short-term solution. It is, however, not a viable solution in the long-term because of its complex optical packaging. Therefore, increasing effort is now put into the possibility of exploiting higher order modulation formats with increased spectral efficiency and reduced optical transceiver complexity. As these type of links are based on intensity modulation and direct detection, modulation formats relying on optical coherent detection can not be straight forwardly employed. As an alternative and more viable solution, this paper proposes the use of carrierless amplitude phase (CAP) in a novel multiband approach (MultiCAP) that achieves record spectral efficiency, increases tolerance towards dispersion and bandwidth limitations, and reduces the complexity of the transceiver. We report on numerical simulations and experimental demonstrations with capacity beyond 100 Gb/s transmission using a single externally modulated laser. In addition, an extensive comparison with conventional CAP is also provided. The reported experiment uses MultiCAP to achieve 102.4 Gb/s transmission, corresponding to a data payload of 95.2 Gb/s error free transmission by using a 7% forward error correction code. The signal is successfully recovered after 15 km of standard single mode fiber in a system limited by a 3 dB bandwidth of 14 GHz. [ABSTRACT FROM PUBLISHER] |
Databáze: |
Complementary Index |
Externí odkaz: |
|