Benzo[a]Pyrene Diones are Produced by Photochemical and Enzymatic Oxidation and Induce Concentration-Dependent Decreases in the Proliferative State of Human Pulmonary Epithelial Cells.

Autor: Reed, Matthew, Monske, Michael, Lauer, Fredine, Meserole, Stephen, Born, Jerry, Burchiel, Scott
Předmět:
Zdroj: Journal of Toxicology & Environmental Health: Part A; 2003, Vol. 66 Issue 13, p1189, 17p
Abstrakt: Organic components within mixtures of combustion-derived materials may play an important role in the correlation between air pollution and adverse cardio/respiratory health. One class of these organic components, polycyclic aromatic hydrocarbons (PAHs), has been shown to produce a wide variety of adverse health effects. An air toxic and a model PAH, benzo[a]pyrene (BaP), is a component of combustion-derived particulate matter (PM). Although most biological effects associated with BaP have been attributed to the cytochrome P-450-derived BaP 7,8-diol 9,10-epoxide, many other BaP oxidation products are formed in atmospheric and biological reactions and may contribute to PAH-induced adverse health effects. In an ambient environment, BaP and other PAHs undergo oxidation in the presence of ultraviolet light, O[SYB2], O[SUB3], NO[SUB2], or OH[SUP•]. Biological peroxidase- and P-450-mediated conversion of BaP produces an extensive metabolic profile of BaP oxidation products that significantly outnumber the 7,8-diol/diol epoxide. The data herein show that in addition to near-ultraviolet light and P-450 isozymes, lactoperoxidase (airway peroxidase) converted BaP into a mixture of three diones, the 1,6-, 3,6-, and 6,12-BaP dione (BPD). In addition, it was found that low concentrations of BPDs induced a concentration-dependent decrease in the proliferation state of human pulmonary epithelial cells in vitro. Nanomolar concentrations of BPDs mediated cell growth inhibition, which was partially reversed by co-incubation with N-acetyl-L-cysteine and ascorbate. BPDs induced the formation of reactive oxygen species as measured by the fluorophore 2,7-dichloro-fluorescein. Together, these results may indicate a role for PAH oxidation products (PAH diones) in the adverse health effects associated with combustion-derived PM and semivolatile organic compounds. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index