Abstrakt: |
Space-tethered robot system is a new kind of space robot, which consists of a robot platform, space tether, and operation robot. This paper presents the coordinated control method in order to save thruster fuel of operation robot in the process of tracking the optimal approach trajectory. First, the optimal approach trajectory of an operation robot is designed using the Gauss pseudospectral method, which resulted in continuous optimal control force using the Lagrange interpolation scheme. The optimal control force is optimized and distributed to space tether and thrusters through simulated annealing algorithm in discrete points, which minimized fuel consumption of thrusters. The distributive continuous force is obtained via cubic polynomial fitting of optimal distributive force in 0.1s discrete time point. To tracking the optimal trajectory, Fuzzy Proportional-Derivative controller is designed with the help of optimal distribution force which come from optimization model. Simultaneously, the relative attitude of the operation robot is stabilized using attitude time-delay algorithm through the reaction wheels. Numerical results are presented, demonstrating the validity of saving thruster fuel and well performance in tracking the optimal trajectory. [ABSTRACT FROM AUTHOR] |