Abstrakt: |
Doxorubicin-overproducing strains of Streptomyces peucetius ATCC 29050 can be obtained through manipulation of the genes in the region of the doxorubicin (DXR) gene cluster that contains dpsH, the dpsG polyketide synthase gene, the putative dnrU ketoreductase gene, dnrV, and the doxA cytochrome P-450 gene. These five genes were characterized by sequence analysis, and the effects of replacing dnrU, dnrV, doxA, or dpsH with mutant alleles and of doxA overexpression on the production of the principal anthracycline metabolites of S. peucetius were studied. The exact roles of dpsH and dnrV could not be established, although dnrV is implicated in the enzymatic reactions catalyzed by DoxA, but dnrU appears to encode a ketoreductase specific for the C-13 carbonyl of daunorubicin (DNR) and DXR or their biosynthetic precursors. The highest DXR titers were obtained in a dnrX dnrU (N. Lomovskaya, Y. Doi-Katayama, S. Filippini, C. Nastro, L. Fonstein, M. Gallo, A. L. Colombo, and C. R. Hutchinson, J. Bacteriol. 180:2379-2386, 1998) double mutant and a dnrX dnrU dnrH (C. Scotti and C. R. Hutchinson, J. Bacteriol. 178:7316-7321, 1996) triple mutant. Overexpression of doxA in a doxA::aphII mutant resulted in the accumulation of DXR precursors instead of in a notable increase in DXR production. In contrast, overexpression of dnrV and doxA jointly in the dnrX dnrU double mutant or the dnrX dnrU dnrH triple mutant increased the DXR titer 36 to 86%. |